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I. INTRODUCTION

The relatively high piezo— and pyroelectric activity of

poly(vinylidene fluoride), PVDF , reported by Kawai1’2 has

prompted a number of investigators to investigate the under-

H lying causes. Several reviews on the piezoelectricity of

polymers with emphasis on PVDF have been published.3’4 There

is mounting evidence that the mechanism for the high activity

in PVDF involves cooperative alignment of dipoles and/or

charge trapping in the polymer film. Murayama,5’6’7 studying

thermally stimulated depolarization currents, surface charges,

and the dependence of the piezoelectric constants on morpho-

logical properties of poly(vinylidene fluoride), has concluded

that trapped charges are responsible for the observed activ-

ity. Labes also favors trapped charges8’9 and has determined

that the trapped charges originate from a Richardson-Schottky

emission from the poling electrodes)0

The mechanism involving molecular dipolar cofltributions

arises from the fact that of the three morphological forms 11

designated a, ~~~, and y, that poly (vinylidene fluoride) can

possess, the ~ phase (form I) has been shown to give the

highest piezo— and pyroelectric activity. The B phase has

orthorhombic mm2 symmetry with the CF2 dipoles parallel to the

crystallographic b axis)2~~
4 The symmetry and polar axis are

necessary and sufficient to render form I poly(vinylidene

fluoride) piezo— and pyroelectrically active)5 Several

investigators have evidence that the polar axis of the crystals

—1—
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can be coerced to lie parallel to an applied electric field.’6 2’

The parallel orientatic~ of these dipoles leads to a residua l

polarization in the film22 that has been used to explain the

• piezo— and pyroelectricity through a variety of mechanisms .22 26

Poly(vinylidene fluoride) film as normally obtained from

the melt is predominantly in the non—polar a form, and, despite

the necess ity for stretching the film in order to obtain the

S phase, most of the major work, as outlined above, has used

this homopolymer. However , it is known that as little as 7%

by weight tetraf luoroethylene copolymerized with vinylidene

fluoride will lead to a copolymer with crystals exclusively in

the e form.27 This obviates the necessity of stretching,

although it is still desirable for enhanced activity , and

removes the added parameter of having a polymer film with par-

tial a phase content. Hence this copolymer system provides

a good model for study. Several investigators have studied

the piezo— and pyroelectric activity of the vinylidene fluoride—

6,28,29 . 30tetrafluoroethylene copolymer. Davis and Broadhurst

have used a dipole theory to calculate the polarization respon-

sible for the piezoelectric d constant of the vinylidene

• fluoride—tetrafluoroethylene copolymer. In the present paper

the vinylidene fluoride—tetrafluoroethylene copolyiner system

is discussed in detail. Six polymers of different composition

synthesized in our laboratories and two copolymers, KYNAR 7200

and KYNAR 5200, made by a commercial Pennwalt process were

used in this study. The piezoelectric activity ii calculated

from a molecular dipole theory and is shown to agree quite

well with observed values.
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I I .  EXPERIMENTAL PROCEDURES

A. Polymer Synthesis

The copolymers of vinylidene fluoride and tetrafluoro—

ethylene were prepared by conventional latex polymerization

procedures. The reaction was initiated at 84°c with the

gradual addition of a sodium persulfate solution. The monomer

mixture of proper proportions was fed to the reactor upon

demand in order to maintain an isobaric condition at approxi-

mately 300 PSI. Upon completion of the reaction, the latex

was coagulated with nitric acid. The coagulum was washed

with distilled water in successive steps until the conductiv-

ity of the wash water was below 0.05 millirrthos/cm. The washed

powder was then dried and used to make compression molded

films. Melt rheology of the samples proved that all the

polymers were of high molecular weight.

B. Film Stretching

Compression molded films of the copolymer s were uniaxially

oriented by stretching to 400% strain. Although there was no

necessity for converting a to ~ form as in the case of the

vinylidene fluoride homopolymer, a uniform stretching opera-

tion was employed. All films were stretched at 100°c at an

initial strain rate of 0.5 in./in.—min. Stretching began

subsequent to a 10—minute preheat at 100°C and was followed by

a 10-minute stress relaxation interval at the same temperature.

—3—
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C. Poling

Poling of the copolymers was accomplished by applying Al

foil electrodes to a 5 cm square of the uniaxially stretched

films. This composite was then sandwiched between 2 brass

electrodes. Voltage was applied incrementally until it was

sufficient to creat a 20 x to6 V/M field across the sample

preheated to 90°c (see figure 1). The poling field was

maintained for 90 minutes, the last 30 minutes being used to

cool the sample with forced air. Subsequent to poling and

prior to testing, the sample was placed between grounded

electrodes and kept under approximately 40 x l0~ Newtons of

force for 12 hours. This latter procedure sufficied to remove

most of the unstable polarizations on the film.

V. Testing of the Piezoelectric Activity

A Carver Press calibrated with a quartz pressure trans-

ducer was used to apply a compressional stress to the surface

of the polymer film sandwiched between electrodes as described

in the poling section (see figure 1). A Keithley electrometer

was used to measure the charge output of the stressed films,

and a piezoelectric stress coefficient was calculated.

III. EXPERIMENTAL RESULTS

In order to calculate the polarization due to dipole den-

sity from equation (1)30

~= ( ~~~+ 2 )_ ~- xW x f (1)
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the degree of crystallinity, y ,  and the average molar volume, V,

are needed. These can be calculated from the heat of fusion and

density of the copolymer, respectively. In equation (1), i.~ is

the dipole moment of vinylidene fluoride (2.1 D),31 x is the mole

fraction of vinylidene fluoride in the copolymer, f is the

fraction of head to tail polymerization (— 0.9), arid 4’ is the

averaged dipole moment contributing to the polarization. Of

course, the dipoles in the non—crystalline regions are thermally

disoriented quite quickly after poling, because the glass tran-

sition of the copolymer is in the region of —30 to —40°C, and

therefore make no contribution to the net polarization. Table 1

summarizes the heats of fusion measured in triplicate on a

Perkin—Elmer Differential Scanning Calorimeter (Model 1B)

coupled with an Infotronic ’s CRS—lOO integrator. Also listed

in the table are the degrees of crystallinity reported in mole

per cent. The crystallinity is calculated from the 
~
Hfusion and

the of one mole of vinylidene fluoride crystals. For the

a value of 1425 cal/mole was used.32’33 The incorporation

of tetrafluoroethylene units in the crystals is not expected to

influence the calculation significantly because the ~Hu is

1370~~ cal/mole. Also in Table 1 are the densities of the poly—

• mers measured by displacement in de—aerated water with a few

per cent surfactant (ASTM 0—792). These densities and the

molecular weight of an average monomer unit were used to cal—

eulate the molar volume, V (column 5 in Table 1).

A. Calculation of the d Constant

The method chosen to measure the d constants actually records

—5— 
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the charge (Q) accumulated on foi l  electrodes as a result of

the applied stress. However, Q is given by equation (2) :

Q r : P x A  (2)

in which p is the polarization per unit area, A. Differentiat-

ing equation (2) with respect to the vector component of stress

results in the equation for the measured d constant.

3
3 3

The subscript 3 denotes the direction perpendicular to the film

plane and stretching direction. The convention for the designa-

tion of direction is diagrammed in Figure 2. The “1” direction

is the direction of stretching and the “2” axis is in the plane

of the film perpendicular to the t h u  axis. Also the “internal

microscopic coordinates” are shown. Here the “1” axis coincides

with the draw direction and the “ c ’ axis of oriented crystal—

lites, and the “ 2 ”  and “3” axes have the same directionality as

the macroscopic axes , but represent the “a” and “b” axes of the

• crystallites (not necessarily respectively). However after

the films are poled it is expected that the crystallographic b

axis (dipole axis) will have a component parallel to the “3”

direction. If we assume that the area of the Al electvodes is

invariant, i.e., that OA/~ ~ = 0 then the measured piezoelec—

tric constant, d33, is given by

—6—
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The electrometer measures the value of Q, and we can cal—

culare d33 from the imposed stress change.

B. Expression for ~ p /aa

- I A calculation of )P/~ a3 from basic principles would pro-

vide d33 values that could be compared to those experimentally

obtained. A molecular dipole theory that was successfully

applied to poly(vinyl chloride)35 permits such a calculation

to be made. Specifically, Broadhurst and Mopsik developed a

theory for a glassy amorphous polymer the molecular dipoles

of which were immobilized by cooling below the glass transition.

When dipoles are immobilized while under the influence of an

electric field, a permanent polarization results. An equation

for this permanent polarization was derived using a cavity

reaction field similar to that used by Onsager.36 The pressure

derivative of this equation agreed quite well with the hydro-

static d constant of poly(vinyl chloride), and the temperature

derivative agreed with the pyroelectric constant. The reader

is directed to reference 35 for greater details in the deriva-

tion.

In the present treatment the glassy polymer is replaced

by semicrystalline vinylidene fluoride—co—tetraf].uoroethylene

polymer , and the pressure derivative that was used to calculate

—7—
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the hydrostatic d constant is replaced by a derivative with

respect to a specific component of the stress. The permanent

polarization resides in the crystals of the polymer that

exhibit a spontaneous polarization because of their dipole

moment and orthorhombic symmetry. In all other respects the

treatments are parallel. The equation for ~P/aa which is

taken from reference 35 is

* 
= -

~~~ { 
~~ 

~~ (1+ 
~~~ 

- (~~ +2) -~~) + 
~~~~~~ :~

o (5) 
1

in which P is the polarization, ~~ is the high frequency limit

of the dielectric constant, V is the volume , D is a constan t
• • . 37

used to correct the Clausius—Mossotti equation, and

and J1 (00) are Bessel functions of the first kind of zero order

and first order , respectively, 
~ 0 

is the librational amplitude

of the oscillating dipoles, and X is a generalized stress

variable (in our case a3).

Following the treatment by Mopsik and Broadhurst, we may

regard as insignificant the terms involving D, and 0~ is small

because in an isothermal, variable stress ex~~,riment the Grurteisen

constant used to approximate 0
~ 

will be small. Hence the simpli—

fied equation

~~ ~~~~~~~~~~ (1— 
ç.~,—l 

~ (6)L V  ax 3 .J

results. In contrast to the case in which a hydrostatic pressure

-8— 
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is applied t’ an isotropic polymer , the present system involves

a specific component of the stress tensor applied to an aniso—

tropic polymer film . The calculation of -
~~

- jj~
_ although

straightforward is worth outlining in detail.

1
C. The Calculation of V Jv/px

All the films in this study were uniaxially drawn and the

resulting orthorhombic symmetry provides additional symmetry

elements that reduce the number of independent terms in the

compliance matrix to nine.38 The matrix notation equation for

the strain, e~ , in terms of the stresses a~ 
is:

S]]  S12 S13 0 0 
- 

0]

~2 
S12 S22 S23 0 0 0 02

€3 S]3 S23 S33 0 0 0 03

14 
= 0 0 0 S44 0 0 04 

(7)

15 0 0 0 0 S55 0 0
5

0 0 0 0 0 06

in which the ~~~ are the components of compliance.

The volume strain is given by

(8)

in which from (7)

—9— 
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= S11a1 + S1202 +

= 51201 + 522 0
2 

+

€ 3 = S13a1 + S23 02 + S3303.

‘

~ Because and 02 
= 0, equation (8) becomes

S1303 + S23 0
3 + S33 03. (9)

Rearranging and in troducing Poisson ’s Ratio = —s
~~
/S
~~

gives

= (1 — — V23 ) 0 3S 33.

Using the values 1113 = 0.6 and 1123 = 0.2 as did Sussner for

explaining anisotropic behavior in the vinylidene fluoride

39homopolymer then yields

= 0.2 S3303. (9B)

To evaluate the volume strain, a value for S33 is needed.

A value can be obtained by attributing the change in capaci-

tance of a parallel plate capacitor to the change in thickness

of the copolymer dielectric (3—direction) when the stress on

the capacitor is normal to the electrodes (see figure 2).

Again it must be assumed tha t ~ A/~ 0 0 and that the stress

change does not cause a significant change in ~~ The latter

assumption can be tested by the expression35’37

II
—10— 
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in which the term in D can be neglected. Using equation (9B)

for -

~~~~ 

v/~ a and a value of = 3 for the copolymers being

considered results in equation (b A)

_ _ _ _  = _
~~
° (0.2)(S33) (bOA )

The compliance has an order of magnitude of l0~~ M
2/N and ~a

in these experiments was 2.79 x 10~ PA. Hence = 1.9 x

which is indeed negligible. Thus the strain, c
~
, accompanying

the change of a stress, ~03~ is given by €3 
= -~2.. — 1 in which

C0 is the capacitance of the system containing the copolymer

under test at the low stress level and Cf is the capacitance

at the high level of stress. With these numbers the compliance

S33 = t~e3/t~C3 is now calculable. Table 2 concaina these values

for eac ~ the copolymers .

D. Calculation of the d Constant

• Using equations 1, 4, 6 and 9B gives d33 as

d33 
= — 

~~~ 2) 
_

~~~
— x XfW {o.2 S33 (l — } (11)

Table 2 also contains the calculated value of d33 together with

the values of the polarization calculated from equation (1).

—1 1—
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It should be noted that ‘1’ was assigned a value of 1/3 in
keeping with the hypothesis that upon coercion from an applied

field the dipoles are restricted to a 180° rotation in response

to the torque.3° Accompanying the calculated d33 are the

observed values. The average difference of these values, A is

H -1.01 and the standard deviation s is 2.5. If the average

difference represents a sample from an infinite population

with mean ~& = 0, then the calculated d33 values are not dif-

ferent from those observed. The null hypothesis is that this

latter statement is true. Using small sampling theory may

disprove it if a Student ’s t value is calculated and shown to

be larger than a critical value, tc• The latter value is

obtained from tables using the number of degrees of freedom

and the desired level of significance.

— 
— 

— —l~0l — 1 16- 

S/N 
- _____

Since tc 1.90 at the 0.05 level of significance, we cannot

reject the hypothesis. Alternately, but not as rigorously,

we may state that the calculated values for d are in agreement

with the observed values.

IV. CONCLUSIONS

It has been shown that at ~he levels of piezoactivity

observed in the vinylidene-co-tetrafluoroethylene polymers the

piezoelectric d constants are a systematic function of the

—12—

— ,



compliance and degree of crystallinity of the polymers and

that the total polarization and its stress dependence are

adequately computed from the molecular dipoles using an Onsager

cavity approach.
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FIGURE CAPTIONS

F ‘

• Figure 1: Sample-electrode configuration showing Al and

brass electrodes aandwiching the polymer sample.

When A is

a voltage supply, the configuration is for

poling.

an electrometer and ~~~~~~ the configuration

is for a d33 test.

an ECD capacitance meter and t1c73~’0, the con-

figuration measures the capacitance as

a function of stress.

Figure 2: The macroscopic and microscopic coordinates used

to designate directionality in the uniaxially

oriented copolymer films.
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